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Non-Newtonian Viscosity of Solutions of Ellipsoidal Particles*
H'AROLD A. SCULERAGA

Departmeot of Chemistry, Corndll University, Ithaca, New York
(Received November 3, 1954)

The specific viscosity, and its dependence on velocity gradient, Saito's results in. terms of Legendre coefficients previously
plays an important role in studies of the structure of macromole- evaluated in the related problem of double refraction of flow. As
cules in dilute solution. A satisfactory theoretical interpretation a result, data are available for the dependence of the viscosity
of the non-Newtonian viscosity of solutions of ellipsoidal particles factor v on axial ratio and on the parameter a, where a= Gle, G
has been given by Kuhn and Kuhn, and also by Saito, who made being the velocity gradient in se - ' and 0 being the rotary diffusion
use of Peterlin's distribution function for the orientation of constant in sec'. With these data it will be possible to determine
particle axes it the streaming liquid and calculated the energy the rotary diffusion constants of ellipsoidal particles from the
dissipation due to both the hydrodynamic orientation and the non-Newtonian viscosity of their solutions, and also to correct
Brownian motion. Also, a theory for the non-Newtonian viscosity viscosity measurements to zero velocity gradient in order to
of solutions of rod-like particles has been developed by Kirkwood. obtain the intrinsic viscosity. Data are also included for the
These theories involve extensive computations which have been evaluation of 0 from the dependence of v at a= 0 on the frequency
carried out here with the aid of a computing machine by expressing of periodic shear waves.

INTRODUCTION into convenient form for computation. The calculation
T HE interpretation of the hydrodynamic properties is very similar to that previously carried out for the

of solutions of macromolecules has usually been related problem of double refraction of flow". with the
based upon a knowledge of the behavior of reasonable aid of the Mark I computer of the Harvard Computa-
models under the same experimental conditions. If the tion Laboratory, and makes use of some of the results
macromolecule does not possess too much flexibility, of the previous computations. As a result, data are

as seems to be the case for proteins, the rigid ellipsoid available for the dependence of the viscosity factor on
of revolution appears to be a good model. Measurements axial ratio and on velocity gradient. With these data
of two independent quantities permit one to compute it will be possible to correct experimental measurements
the size and shape of a rigid ellipsoid which has the to zero velocity gradient to obtain the intrinsic viscosity
same hydrodynamic properties as the protein.' One of which is easily related to the particle size and shape,
these quantities is the intrinsic viscosity, obtainable and also to determine the rotary diffusion constants of
from the specific viscosity which, in general, depends asymmetrical particles from the dependence of the
on the velocity gradient in the flowing solution. The viscosity on velocity gradient. Thus, such viscosity

dependence of the viscosity of solutions on the size and experiments will provide two hydrodynamic quantities
dissolved ellipsoidal particles and on the useful in studies of the configurations of proteins in

shape of the diluteve solution.atile ad n h
velocity gradient has been treated by several inves- dilute solution.'

tigators. - 8 The dependence on the velocity gradient EXPERIMENTAL OBSERVATION
Sinvolves computational problems which have been

resolved in the present work with the aid of a computing If a viscous liquid is maintained between two parallelmachin thi prse th thery of atomaking planes of area A, one of which moves relative to theFoooPother with a velocity V, the velocity gradient in theuse of the hydrodynamic treatment of Jeffery 2 and the y y g
distibuionfuntionof etelinl iseasest toput liquid will be G=dV/dr in sec'1, where r is taken in a

distribution function of Peterlin,i is easiest' ° to put direction normal to the two planes. The viscosity
* This work was supported by the Office of Naval Research coefficient 7o of the liquid is a measure of the internal

and by the National Science Foundation. friction which determines the value of the tangential
11. A. Scheraga and L. Mandelkern, J. Am. Chem. Soc. 75, force f5 required to maintain the velocity gradient G

179 (1953).
2 G. B. Jeffery, Proc. Roy. Soc. (London), A102, 161 (1922-23). between the planes. According to Newton,
3A. Peterin, Z. Physik 111, 232 (1938).

4 R. Simha, J. Phys. Chem. 44, 25 (1940).
s W. Kuhn and H. Kuhn, Helv. Chim. Acta 28, 97 (1945).
6 J. G. Kirkwood, Rec. tray. Chim. 68, 649 (1949); J. G. This situation is most easily realized experimentally

Kirkwood and P. L. Auer, J. Chem. Phys. 19, 281 (1951). i t iuid is plce i tealar gpeteen
7 N. Saito, J. Phys. Soc. Japan 6, 297 (1951). if the liquid is placed in the annular gap between
8 B. H. Zimm (private communication) has obtained an asymp- two concentric cylinders of a Couette-type apparatus,

totic solution for ellipsoidal particles at very high velocity gradi-
ents, and Kirkwood (private communication) has obtained a and one of the cylinders rotated. If the gap is large G
solution for thin rods as a function of velocity gradient.

These calculations were carried out at the Cornell Computing and (74). The equivalence of their treatment and that of Saito
Center with the aid of an IBM card-programmed calculator under (see reference 7) and Kirkwood (see reference 6) has been demon-
the direction of R. Lesser. strated by Saito and Sugita [J. Phys. Soc. Japan 7, 554 (1952)].

W0 Kuhn and Kuhn (see reference 5)' have also given a complete "Scheraga, Edsall, and Gadd, J. Chem. Phys. 19, 1101 (1951);
treatment for the dependence of viscosity on velocity gradient Annals of the Computation Laboratory of Harvard University,
for dilute solutions of ellipsoidal particles. See their Eqs. (73) 26, 219 (1951).
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1527 NON-NEWTONIAN VISCOSITY OF SOLUTIONS

varies with r, but if it is small compared with the cylinder where P is a factor dependent on the shape of the
radius, the behavior of G approaches that for the ideal particle. Inserting Eq. (3) in Eq. (2) we obtain"3

case of two parallel planes of infinite extent, where it is
constant. The determination of 71 in the Couette lir n (4)
apparatus is carried out by rotating the outer cylinder n,-s0 no
(the inner one being suspended freely by a torsion wire)
and measuring the torque transmitted by the liquid where nv is the volume concentration of the particles
from the outer to the inner cylinder." in the solution. If, in turn, the data are extrapolated to

If no is independent of G the liquid is said to be zero velocity gradient, then '= [I], where [i], is the
Newtonian in its viscous behavior; if 710 depends on G intrinsic viscosity for volume concentration. Since

it is said to be non-Newtonian. If G exceeds a certain concentration is usually expressed as c in g/10 0 cc
critical value in a given experiment the flow becomes and the quantity computed for a protein of molecular

turbulent; we are concerned here only with values of weight M is the equivalent hydrodynamic volume V,
G below this critical region so that the flow is laminar, the working form of Eq. (4) will be
Most pure liquids in laminar flow exhibit Newtonian - N 1 0 -
behavior whereas many solutions of macromolecules [7] = lim (- - , (5)
are non-Newtonian. Dilute solutions of relatively .-0 '7 0M
small and symmetrical molecules like serum albumin
approach Newtonian behavior whereas dilute solutions where it is Avogadro's number and '0 ] is the intrinsicof large asymmetrical molecules like tobacco mosaic viscosity for concentration in g/100 cc. Since the treat-
virus are non-Newtoniamn ment here is confined to the rigid ellipsoid of revolutionviru arenon-ewtoian.model, we are concerned only with the quantity P for

The viscosity coefficient defined in Eq. (1) is also a moelwao d o wI the uantitye oran ellipsoid of volume v. In the special case where the
measure of the dissipation of energy in the flowing ellipsoid becomes a sphere, v takes on the Einstein
liquid, the amount of work done in overcoming frictional value of 2.5 and is independent' of G; such a solution
resistance per unit time per unit volume being G2 0. exhibits Newtonian viscous behavior. If the dissolved
When large particles are suspended in a flowing liquid particles are asymmetrical, then the solution will
made up of small molecules, there is an increased energy exhibit non-Newtonian viscosity wherein v will be
dissipation which depends on the size and shape of the larger than 2.5 at zero G and will decrease with increas-
dissolved particles." The total energy dissipation per ing G, i.e., (dW/d)A, decreases as the velocity gradient
unit time per unit volume 4 in the solution is GIn. is increased due to increasing orientation of the asym-

metrical particles in the streaming liquid. For any
&- - , velocity gradient the average increment in rate of

G\n ) (2) energy dissipation per unit volume, due to the presence
of the particles, is given by Eq. (3) where u depends on

where 71 is the viscosity coefficient of the solution, qo is G and on the axial ratio" p= a/b. Therefore the factor

that for the pure solvent, n is the number of particles v is determinable from a knowledge of (dW/dt)k as a
function of G for particles of a given size and shape in

per unit volume, and (dW/dt)A, is the average increment a solvent of viscosity coefficient 7o.
in rate of energy dissipation per unit volume due to
the presence of a single dissolved particle; G2io is that THEORY
part of the energy dissipation due to the solvent when
present alone and is assumed to be the same even when The evaluation of the increment in energy dissipation

the particles are dissolved in the solvent. As a result, is based on the theory that a solution of ellipsoidal

-1 will be greater than io. If each ellipsoidal particle has particles in laminar flow is in an equilibrium steady state
awvlue ofre=tern where If ach eipsoi rthe iaxis o dependent upon the magnitude of two opposing forces,
a volume of =41rab 3 where a is the semiaxis of one arising from the velocity gradient which tends to
revolution and b is the equatorial radius then"4  orient the particles in the direction of the stream lines,

the other due to the Brownian motion which tends to
dW =Go, (3) produce a random orientation. The Brownian motion
-Wdi )AV= may be characterized by a rotary diffusion constant

12 For experimental details and results of viscosity measurements 0 (in sec-i) which depends on the volume and shape
see A. E. Alexander and P. Johnson, Colloid Science (Oxford of the ellipsoid." To evaluate v the distribution function
University Press, New York, 1949), Chap. XIII. F (6,% ,t) for the orientation of the major axes of the

1 In the treatment presented here it is assumed that there is
no interaction between dissolved particles and, therefore, no 4 It should be pointed out that the notation for p differs among
increment in energy dissipation due to such interactions. This various authors. For example, several authors (see references
situation is realized experimentally by making viscosity measure- 1 and 15) have defined p as b/a where a and b have the same
ments at various concentrations and extrapolating to infinite meaning as used here.
dilutio'. I F. Perrin, J. phys. radium 5, 497 (1934).
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particles at any time at a given value of G must first His results were at variance with those of Simh who
be computed.16 This has been carried out by Peterlin' took into account the energy dissipation arising also
using Jeffery's' hydrodynamic treatment. Once the from the Brownian motion. Simha's treatment was
distribution function is known then (dW/dl)A may be applied only to the limiting case of a= 0 where the
evaluated for any distribution according to Saito's particles have random orientation due to the Brownian
theory7.'0 We shall thus outline the Jeffery-Peterlin- motion and can be considered as rotating with uniform
Saito treatment wherein the quantities required for angular velocity. A complete theory for v as a function
the evaluation of v have been obtained by means of a of a was finally obtained by Kirkwood and Auer for

computing machine. od s

The distribution function for ellipsoidal particles rods, and by Kuhn and Kuhn,' and also by Saito,7 for

suspended in a continuous liquid medium under the ellipsoids.'8 These theories consider that Peterlin's
condition of laminar flow obeys the general diffusion distribution function F correctly describes the orienta-
equation . tion of ellipsoidal particles, and that the increment in

OF energy dissipation, (dW/d1)^A, contains contributions
- =OAF-div(Fw) (6) not only from the hydrodynamic orientation but also
0 from the Brownian motion.0 The result obtained by

where A is the Laplacian operator and co is the angular Saito7 is

velocity of the rotating ellipsoid due to the hydrody- (J±K DC F sinV sin'2 df2
namic forces and has been computed by Jeffery as a f
function .f G and R, where

P2-1 +L f Fsinodl+Mf F cos26da/2= - (7)ff
p2+1

N
For a prolate ellipsoid a> b, whereas for an oblate one - F sino sin21df& (9)
a<b. Therefore, R= 1 for an infinitesimally thin rod, 0 a
for a sphere, and -1 for an infinitesimally flat disk.

If the particles are relatively small (no dimension where the coefficients J, K, L, M, N depend only on
greater than 10 000 A), then within a very short time the axial ratio p of the ellipsoid 0 and are defined as
after initiation of the rotation of the cylinder a steady follows:
state is reached in which OF/O1=O. For the steady state 1 a0"
Peterlin,' making use of Jeffery's results for w, expressed a =
the solution of the diffusion equation in terms of slowly ab) 2
converging series of spherical harmonics. 1 1

i K=-
.. ab2" 2bo t

F= 2 Ri[ ano, P2 n
i-o 1 2

1 = (10)
+Z (a.,,,, ,' cos2nup+b n,., j sin~ins)Psn~"J (8)al'o(a+)

The Legendre coefficients am, 3 and bnm, . are functions ab b2i]0

of the parameter a= G/O. P 2,, are spherical functions of
cos 6 and P2m are their derivatives of order 2m. 6 a2- b
Recurrerice relations are available 3, for computation - •
of these Legendre coefficients. Evaluation of these ab2 aao+b2o
coefficients gives F as a function of a and R. This 18 This problem was discussed extensively at the International
distribution function has been used previously for flow .Rheological Congress, Scheveningen (Holland), 1948, the Proceed-

ings of which have been published.
birefringence calculations" based on the theory of '1 For further justification that there is a contribution to the
Peterlin and Stuart.17  energy dissipation from the Brownian motion see Kuhn and

Kuhn (reference 5) and also Saito and Sugita (reference 10).Using this distribution function for the particle An apparent disagreement over the effect of the rotary Brownian
orientation as a function of a, Peterlian computed v by motion on the viscosity of solutions of rod-like macromolecules
taking into account the energy dissipation due only to was reported in the discussion following Kirkwood's paper

[J. Polymer Sci. 12, 1 (1954)] which was presented at the
the rotation of tihe particle in the hydrodynamic field. Uppsala Symposium on Macromolecules. This disagreement has

been resolved by Saito [J. Polymer Sci. 14, 212 (1954)].
See reference 11 for the definition of the coordinate system 2 While Eqs. (10) appear to be functions of a and b, rather than

in the Couette cylinder apparatus. of p, the substitution of Eqs. (12) into Eqs. (10) leads to a depend-17 A. Peterlin and H. A. Stuart, Z. Physik 112, 1 (1939). ence on only the ratio a/b.
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The quantities a0, ci t , U011, go, g0t, 5ol are functions of a is known.
and b defined by Jeffery.- (sin0 sin'2 P)AV

fMIV fx 1 4 8 4 cos4,p Id
(0+x)1(b ' = F- o--P 2+-P- o d

S15 21 35 210

5=j + , j) (13)

d~v (CO5'O*)AI

o'= (a2+x )1 (b 2+x'

f 00 dxv

dx I.- Ei R~aioj]. (14)

r xdx
,o= (a;+.)1(b1+.,x<ino^

= I- (COs5)AI. (15)

ott =d(sin'0 sin2 ()A,

(a-+x) (b2+x)"

E valuation of these integrals gives F f P220n ](1

1 2 - 167r
b(P -- A) " ' R ib,,, . (16)

1 fA} Whereas a complete set of Legendre coefficients
b (p2_- 1) 2 a,., and b,,,,j would be required to determine the

distribution function F, it can be seen from Eqs. (13)

pt 3A to (16) that, after integration, the only ones which are
14ab2b p_ ) (2p 2-5)-- required for the evaluation of vare ao, , ago, , a22 , , bll, j.

(12) RESULTS AND DISCUSSION

got alb 2 1+ 2 ++ 4p  As a approaches zero Eq. (9) reduces to the form

b(p--1)' 2 41 v=r-so:2. . .  (17)

2p2 p1 (4p- 1) where r and s are constants; i.e., v shows a quadratic
A1 +-, dependence on a with a horizontal tangent at a

ab2(p2- 1)' 4 8 16p As a increases, the complete solution for i' as a function
2p___ [_ 3 (2p'+)A of a in Eq. (9) is obtainable by evaluation of the

got/{ -~-- - A Icoefficients alo,,, a20,, a22,,, bl,,j of Eqs. (13) to (16).
ab(p2- 1)' 2 4p 1' These coefficients have all been previously computed"

where for values of a up to 200 in connection with the related
problem of double refraction of flow. As reported

1 -P- 1)1 previously," a sufficient number of j-values required to
Ai2- n for prolate ellipsoids (> 1) attain the limiting values of the summations appearing
(p'-1)t p+(p--l)1 in Eqs. (13) to (16) was obtained for a;9_60. However,

2 arc cosp for a> 60, the additional j-values required could not
= for oblate ellipsoids (p <1). be obtained because of the limited internal storage

(1-p), capacity of the Mark I computer. Therefore, no results
are reported here for a>60. For a !60 the values

The integrals in Eq. (9) represent mean values of the obtained are probably accurate to well within 1%.21

given trigonometric functions which may be expressed 21 See the Appendix and also reference 11 for some discussion

in terms of spherical harmonics and evaluated after F of the convergence of these series.
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TABLE I. Prolate ellipsoids; P as a function of a for various axial ratios, p.

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 50 100 300

0.00 2.500 2.908 3.685 4.663 5.806 7.099 8.533 10,10 11.80 13.63 17.67 22.19 27.18 32,63 38.53 55.19 176.8 593,7 4279
0.25 2.500 2.907 3.683 4.661 5,802 7,094 8.526 10.09 11.79 13,62 17.65 22,17 27,15 32.60 38.49 55.13 176.6 593.0 4274
0,50 2,500 2.906 3.679 4.653 5.791 7.078 8.506 10.07 11.76 13.59 17.60 22,10 27.07 32.50 38.37 54.96 176.0 591,0 4260
0.75 2.500 2.903 3.672 4.641 5.773 7.053 8.474 10.03 11.71 13.53 17.52 22.00 26,94 32.34 3A.18 54.68 175.1 587.7 4235

1.00 2.500 2.899 3.663 4.624 5.748 7.019 8.429 9.973 11.65 13.45 17.41 21.85 26.76 32.12 37.91 54.29 173.8 583.2 4202
1.25 2.500 2.895 3.651 4.604 5.717 6.977 8.374 9.904 11.56 13.34 17.28 21.68 26.54 31.84 37.59 53.81 172.1 577.6 4161
1.50 2.500 2.890 3.637 4.579 5.681 6.927 8.310 9.823 11.46 13.23 17.11 21.47 26.28 31.53 37.21 53.25 170.3 571.1 4113
1.75 2.500 2.884 3.621 4.552 5.640 6.872 8.237 9.732 11.35 13.09 16.94 21.24 25,98 31.17 36.78 52.62 168.1 563.8 4059

2.00 2.500 2.877 3.604 4,522 5.596 6.811 8.158 9.633 11.23 12.95 16.74 20.98 25.66 30.78 36.31 51.93 165.8 555.8 4000
2,25 2.500 2.871 3.586 4.490 5.548 6.746 8.074 9.528 11.10 12.80 16.53 20.71 25.32 30.36 35.81 51.20 163.4 547.4 3938
2.50 2.500 2.863 3.566 4.457 5.499 6,678 7.986 9.418 10.97 12.64 16.31 20.43 24.97 29.93 35.29 50.44 160.8 538.5 3873
3,00 2.500 2.848 3.526 4,387 5.396 6.537 7.804 9.190 10.69 12.31 15.86 19.84 24.24 29.03 34.22 48.86 155.5 520.3 3738

3,50 2,500 2.832 3.485 41.316 5.291 6.395 7.619 8.958 10.41 11.97 15.41 19.25 23.49 28.12 33.13 47.26 150.1 501.8 3602
4,00 2,500 2.816 3.444 4.246 S.iA 6.254 7.437 8.731 10.13 11.64 14.96 18.67 22.77 27.24 32.07 45.70 144.9 483.8 3470
4.50 2.500 2.801 3.405 4.179 5.089 6.119 7.263 8.514 9.868 11.32 14.53 18.12 22.07 26.38 31.05 44.21 139.9 466.6 3343
5.00 2,500 2.787 3.367 4.115 4.995 5.991 7.097 8.307 9.617 11.03 14.12 17.59 21.41 25,58 30.09 42.80 135.2 450.3 3223

6.00 2.500 2.760 3.299 3.999 4.824 5.759 6,797 7.933 9.162 10.48 13.39 16.64 20.22 24.12 28.35 40.24 126.6 421.0 3007
7.00 2.500 2.738 3.210 3.897 4.675 5.558 6.537 7.608 8.768 10,01 12.75 15.82 19.19 22.87 26.84 38.04 119.2 395.7 2822
8.00 2.500 2.718 3,189 3.810 4.547 5.383 6.312 7.328 8.427 9.608 12.21 15.11 18.30 21.78 25.55 36.14 112.9 374.0 2663
9.00 2.500 2.702 3.145 3.734 4.435 5.232 6,117 7.085 8.132 9.257 11.73 14.49 17.53 20.85 24.42 34.50 107.5 355.3 2527

10.00 2.500 2,688 3.107 3.668 4.338 5.100 5.947 6.872 7.874 8.950 11.32 13.96 16,86 20.03 23.45 33.07 102.7 339.1 2408
12.50 2.500 2.661 3.031 3.536 4.143 4.834 5.603 6.444 7.355 8.332 10.48 12.88 15.51 18.38 21.48 30,21 93.19 306.7 2171
15.00 2.500 2.642 2.975 3.435 3.989 4.623 5.329 6.101 6.936 7,833 9.804 12.00 14.42 17.05 19.90 27.89 85.54 280.7 1983
17.50 2.500 2.629 2.934 3.361 3.880 4.476 5.139 5.866 6.652 7.496 9,350 11.42 13.69 16.17 .18.84 26.34 80.43 263.3 1856

20.00 2.500 2.619 2.900 3.300 3.788 4.349 4.974 5.660 6.402 7,199 8.949 10.90 13,05 15.38 17.90 24.98 75.93 248.0 1746
22.50 2.500 2.611 2.874 3.250 3.712 4.245 4.839 5.491 6.198 6.956 8.621 10.48 12.52 14.74 i7.13 23.86 72.28 235.7 1657
25.00 2,500 2,605 2.852 3.208 3.647 4.155 4.723 5,346 6.021 6.745 8.337 10.11 12.06 14.18 16,47 22.90 69.12 225.0 1580
30.00 2.500 2.597 2.819 3.142 3.545 4.012 4.536 5.112 5.736 6.406 7.878 9.520 11.32 13.29 15.40 21.35 64.05 207.9 1457

35.00 2.500 2.591 2.795 3.092 3,465 3,900 4.389 4.927 5.511 6.138 7.517 9.054 10.74 12.58 t4.56 20.12 60.39 194.5 1361
40.00 2.500 2.587 2.777 3.053 3.401 3.809 4.269 4.776 5.327 5.918 7.220 8.671 10.27 12.00 13.87 19.12 56.80 183.6 1283
45.00 2.500 2,584 2.763 3.021 3.348 3.733 4.167 4.646 5.167 5.728 6.960 8.336 9.847 11.49 13.26 18.24 53.94 174.0 1214
50.00 2.500 2.582 2.752 2,995 3.303 3,667 4.078 4.533 5.028 5.560 6.732 8.039 9.477 11.04 12.73 17.46 51.40 165.5 1154

60.00 2.500 2.579 2.736 2,955 3.232 3,560 3.933 4.345 4.794 5.278 6.344 7.535 8.845 10.27 11.81 16.12 47.04 151.0 1050

From Eq. (7) it can be seen that R(p)= -R(1/p). of j. However, the b-coefficient in Eq. (16) has nonzero
This transformation from prolate to oblate does not values only for odd powers of j. Therefore, the contribu-
affect the summations in Eqs. (13) to (15) since these tion of this term to v in Eq. (9) is of opposite sign for
a-coefficients have nonzero values only for even powers prolate and oblate ellipsoids (as far as the effect of R'

TABLE II. Oblate ellipsoids; v as a function of a for various axial ratios, p.

XI 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 50 100 300

0.00 2.500 2.854 3.431 4.059 4.708 5.367 6.032 6.700 7.371 8.043 9.391 10.74 12.10 13.45 1j.80 18.19 35.16 69.10 204.9
0.25 2.500 2.854 3.430 4.058 4.706 5.365 6.029 6.697 7.367 8.039 9.386 10.73 12.09 13.44 14.79 18.18 35.13 69.06 204.8
0.50 2.500 2,853 3.427 4.053 4.700 5.357 6.019 6.686 7.354 8.025 9.369 10.72 12.07 13.42 1 .77 18.15 35.06 68.91 204.3
0.75 2.500 2,850 3.422 4.045 4.689 5,344 6.004 6,668 7.334 8.002 9.341 10.68 12.03 13.37 11,.72 18.09 34.95 68.68 203.6

1.00 2.500 2.847 3.415 4.034 4.675 5.326 5.983 6.643 7.306 7.971 9.304 10.64 11.98 13.32 14.66 18.01 34.79 68.36 202.71.25 2.500 2.844 3.406 4.021 4.657 5.304 5.956 6.613 7.272 7.933 9,257 10.59 11.92 13.25 14,58 17.91 34.59 67.97 201.51.50 2.500 2.839 3.396 4.005 4.636 5.278 5.926 6.577 7.231 7.887 9,203 10.52 11.84 13.16 14.49 17.80 34.36 67,51 200.1
1.75 2.500 2.834 3.384 3,988 4.613 5.249 5.891 6.537 7.186 7.837 9.141 10.45 11.76 13.07 14.38 17.67 34.10 66.99 198.6

2.00 2.500 2.829 3.371 3.968 4.587 5.217 5.853 6.493 7.136 7.781 9.074 10.37 11.67 12.97 14.27 17.52 33.82 66.42 196.9
2.25 2.500 2.823 3.358 3.948 4.560 5.183 5.813 6.447 7.083 7.722 9.003 10.29 11.57 12.86 14.15 17.37 33.51 65.82 195.0
2.50 2.500 2.817 3.344 3.926 4.531 5.147 5.770 6,398 7.028 7.660 8.928 10.20 11.47 12,75 14.02 17.22 33.20 65.18 193.1
3.00 2.500 2.804 3.314 3.881 4.471 5.073 5.682 6.296 6.912 7.531 8.772 10.02 11.26 12.51 130.6 16.89 32.54 63.87 189.2

3.50 2.500 2.790 3.283 3.834 4.410 4.997 5.592 6.192 6,795 7.399 8.613 9.830 11.05 12.27 13.49 16.55 31.87 62.53 185.2
4.00 2.500 2.777 3.253 3.788 4,349 4.922 5.503 6.089 6.678 7.269 8.456 9.647 10.84 12.03 13.23 16.22 31.21 61.20 181.2
4.50 2.500 2.764 3.224 3,744 4.290 4.850 5.417 5.990 6.566 7.144 8.304 9,469 10,64 11,80 12.97 15.90 30.57 59.92 177.4
5.00 2.500 2,751 3.196 3.701 4.234 4.781 5.335 5.895 6.458 7.024 8.159 9.299 10.44 11.59 12.73 15,60 29.96 58.70 173.7

6.00 2.500 2,729 3.144 3.623 4.131 4.653 5.184 5.720 6.260 6.803 7.893 8.987 10.08 11.18 12.28 15.04 28.84 56.46 167.0
7.00 2.500 2.709 3.099 3.555 4.040 4.541 5.050 5.566 6.086 6.608 7.657 8.712 9.769 10.83 11.89 14.54 27.85 54.48 161.0
8.00 2.500 2.692 3.060 3.494 3.960 4.442 4.933 5.430 5.932 6.436 7.450 8.469 9.490 10.51 11.54 14.11 26.97 52.73 155.8
9.00 2.500 2.678 3.026 3.442 3.890 4.354 4.829 5.310 5.796 6.284 7.266 8.254 9.244 10.24 11.23 13.72 26.20 51.19 151.2

10.00 2.500 2.666 2.996 3.395 3.827 4.277 4.737 5.2041 5.675 6.149 7.103 8.062 9.025 9.990 1.96 13.38 25,51 49.82 147.1
12,50 2.500 2.642 2.936 3.300 3.699 4.117 4.546 4.983 5.424 5.868 6.764 7.665 8.570 9.477 10.39 12.66 24.08 46.96 138.5
15.00 2.500 2.626 2.891 3.225 3.597 3.988 4.390 4.801 5.217 5.636 6.482 7.334 8,190 9.049 9.909 12.07 22.89 44.57 131.3
17.50 2.500 2,614 2.856 3.169 3,520 3.892 4.276 4.669 5.066 5,468 6.279 7.096 7.918 8.742 9.568 11.64 22,03 42.86 126.2

20.00 2,500 2,605 2,829 3.123 3,455 3.809 4.176 4,552 4.933 5.319 6.097 6.883 7.674 8.467 4.262 11.26 21.27 41.33 121.6
22,50 2.500 2.598 2.807 3.084 3.400 3.739 4.091 4.453 4.820 5.192 5.944 6.703 7.467 8.234 q.002 10.93 20,62 40.03 117.7
25.00 2.500 2.593 2.789 3.051 3,352 3.677 4.017 4,365 4.720 5.079 5.806 6,541 7,281 8.023 8.768 10.64 20,03 38,86 114.2
30.00 2.500 2.585 2.760 2.998 3.275 3.577 3.894 4,221 4.554 4,893 5.579 6.273 6.973 7,676 8..381 10,1S 19,06 36.91 108,4

35.00 2,500 2.580 2.740 2,957 3.215 3.497 3.795 4.104 4.420 4.741 5.393 6.054 6,721 7,391 8.064 9.753 18,24 35.32 103.60
40.00 2.500 2.577 2.724 2.925 3.165 3.431 3.712 4.005 4.306 4.612 5.235 5.867 6,505 7.147 7.792 9.411 17.57 33.94 99.SO
45.00 2.500 2.574 2,712 2.899 3,124 3.375 3.643 3.922 4.209 4.501 5.098 5,705 6,318 6.935 7.555 9.114 16.97 32.75 95.92
50.00 2.500 2.572 2,703 2.878 3.090 3.327 3.581 3.848 4.122 4.403 4.975 5,559 6.149 6.743 7.341 8.844 16.43 31.66 92.65

60.00 2.500 2.570 2.690 2.846 3.036 3.251 3.483 3.727 3.980 4.240 4,772 5.316 5.867 6,423 6.982 8.391 15.51 29.82 87.15
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FIG. 1. Dependence of 11 on a for prolate ellipsoids of Fic. 3. Dependence of v at a=0 on axial ratio for
various axial ratios. prolate and oblate ellipsoids.

is concerned). However, the quantity N is positive for been reported by Mehl, Oncley, and Simha.12  An
prolate and negative for oblate ellipsoids so that this expanded form of their results was obtained during
term always increases the value of v. As a increases, thle course of the present computations and is reported
the last term of Eq. (9) (arising from the energy dissipa- in Table III and Fig. 3.
tion due to the Brownian motion, and neglected by It has been pointed out by Zimm that the frequency
Peterlin) becomes negligible. The values of J, K, L, M, dependence of v at a= 0 provides an alternative method
N of Eqs. (10) are different for prolate and oblate to that of non-Newtonian viscosity for the determina-
ellipsoids. Therefore, the numerical values of v as a tijn of rotary diffusion constants. If one uses periodic
function of a will differ for prolate and oblate ellipsoids, shear waves of frequency co [not the same co as used in
The results of the computations of v as a function of a Eq. (6)], then the frequency dependence is expressible
for various axial ratios p are given in Table I for by a modified form of Eq. (18) in terms of a complex
prolate and in Table I for oblate ellipsoids. Some of
these results are also shown in Figs. 1 and 2 which are TABLE III. Dependence of viscosity factors P, VA, and PB on axial
qualitatively similar to those of Kuhn and Kuhn' and ratio for prolate and oblate ellipsoids at a=0 and w = 0.

Saito.
7

The special case where a= 0 is of interest. Taking the Prolate Oblate
limiting forms of the summations in Eqs. (13) to (16) =a/b PA v, lip =b/, a VA , P

1.0 2.500 0.000 2.500 1.0 2.500 0.000 2.500
for a=O, and substituting in Eq.' (9), the following 1.2 2.504 0.021 2.525 1.2 2.505 0.019 2.524

1.4 2.516 0.072 2.588 1.4 2.520 0.063 2.583
1.6 2.533 0.144 2.677 1.6 2.542 0.119 2.661
1.8 2.555 0.229 2.784 1.8 2.573 0.180 2.753

4 2 1 .R 2.0 2.583 0.325 2.908 2.0 2.610 0.244 2.854p= r/ /r/;tr/_ d~--'k l .'l-Z T F''l (8) 2.25 2.623 0.455 3.078 2.25 2.664 0.325 2.989
(18) 2,50 2:671 0:595 3:266 2:50 2:727 0:405 3:132

15 3 3 15 2.75 2.726 0.743 3.469 2.75 2.795 0.485 3.280
3.0 2.786 0.899 3.685 3.0 2.868 0.562 3.430

tcl with that obtained previously 35 2.922 1.230 4.152 3.5 3.027 0.714 3.741This equation is idntl w t a d i 4.0 3.077 1.586 4,663 4.0 3.198 0,861 4.059

by Simha4 for the case of complete Brownian motion. 4.5 3,248 1.967 5.215 45 3.378 1004 4382so0 3.434 2.372 5,806 5.0 3.563 1.145 4.708

Computations of v as a function of p, for a=0, have 6.0 3.844 3.254 7.098 6.0 3.947 1.420 5.367

7 4.302 4.230 8.532 7 4.342 1.690 6.032
8 4.804 5.299 10.103 8 4.744 1.956 6.700
9 5.346 6.458 11.804 9 5.151 2.220 7.371

20 10 5.928 7.706 13.634 10 5.562 2.481 8.043
12 7.203 10.466 17.660 12 6.390 3.001 9.391

14 8.622 13.567 22.19 14 7.224 3.519 10.74
16 10.179 17.002 27.18 16 8.061 4.034 12.10

15 18 11.868 20.762 32.63 18 8.901 4.548 13.45
20 13.688 24.842 38.53 20 9.743 5.061 14.80

I/" .20 25 18.787 36.406 55.19 25 11.853 6.340 18.19

10 30 24.65 49.86 74.51 30 13.966 7.618 21.58
35 31.24 65.15 96.39 35 16.083 8.894 24.98
40 38.53 82.23 120.76 40 18.200 10.170 28.37
50 55.20 121.61 176.81 50 22.438 12.720 35.16
60 74.54 167.74 242.28 60 26.678 15.268 41.95

70 96.45 220.46 316.9 70 30.92 17.82 48.74
I/Pv l 80 12088 279.60 400.5 80 35.16 20.36 55.52

90 147.77 345,03 492.8 90 39.40 22.91 62.31
100 177.06 416.65 593.7 100 43.64 25.46 69.10
150 358.44 864.74 1223.2 150 64.86 38.19 103.05

0 5 10 15 20 25 30 200 595,6 1457.3 2052.9 200 86.08 50.93 137.01
. 300 1226.9 3052.5 4279.4 300 128.52 76.39 204.91

FIG. 2. Dependence of P on a for oblate ellipsoids of
various axial ratios. 22 Mehl, Oncley, and Simba, Science 92, 132 (1940).
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viscosity factor whose real part is given by 3  TABLE IV. Values of summations as a function ofj for
several valucs of a.

V=() - aoi 2a9o,,
1+w2/362 25 0.06449 0.01935 0.0005235 0.009029

where 0.09624 0.03951 0.0006101 0.015774
0.10956 0.05068 0.0005530 0.019813

4 2 0.11145 0.05478 0.0004914 0.021399
0.10923 0.05492 0.0004622 0.021545

15 3 3 0.10742 0.05390 0.0004568 0.021256
and 0.10670 0.05317 0.0004600 0.021017

VB=RN/15. 0.10658 0.05292 0.0004636 0.020918
0.10669 0,05292 0.0004653 0,020908
0.10678 0.05297 0.0004657 0.020923

For zero frequency Eq. (19) reduces to Eq. (18); at 0.10681 0.05301 0.0004656 0.020934
high frequency v approaches vj. As indicated by 0.020939

Cerf, 23 0 is determinable from the slope of the curve 40 0.06671 0.02001 0.0006295 0.005837
of v vs w at the inflection point. For this purpose values 0.10338 0.04490 0.0008667 0.010806
Of vA and yR as a function of p are also included i 0.12504 0.06255 0.0009241 0.014767

0.13611 0.07356 0.0009037 0.017518
Table III. 0.13917 0.07915 0.0008639 0.019029

Now that data are available for P,, and PB as a func- 0.13857 0.08093 0.0008301 0.019628
0.13720 0,08075 0.0008093 0.019723

tion of p at a=0, and for v as a function of a and p, 0.13603 0.07999 0.0007998 0.019616
it will be very desirable to have extensive experimental 0.13533 0.07934 0.0007971 0.019482

0.13496 0.07894 0.0007974 0.019383
tests to check the validity of the theory. Some prelimin- 0.13481 0.07874 0.0007984 0.019328
ary results on non-Newtonian viscosity have already 0.019303
been obtained2 4  60 0.06753 0.02026 0.0006731 0.003939

APPENDIX 0.10599 0.04769 0.0009891 0.007460
0.13104 0.06925 0.0011394 0.010583

In connection with the convergence problem"4 it is 0.14748 0.08494 0.0011965 0.013208
0.15578 0.09505 0.0012054 0.015137

of interest to examine the values of the summations of 0.15917 0.10117 0.0011934 0.016389
Eqs. (13) to (16) for increasing j-values for the case 0.16021 0.10429 0.0011754 0.017107

0.16023 0.10543 0.0011590 0.017461
R= 1. Such data are shown in Table IV for a=25, 40, 0.15983 0.10564 0.0011471 0.017597
and 60, where each entry is the cumulative value of the 0.15933 0.10547 0.0011397 0.017620
summation as j increases. It can be seen that enough 0.15889 0.10519 0.0011356 0.017595
terms have been computed to obtain the limiting values

2 R. Cerf, Conpt. rcnd. 234, 1549 (1952). of the summations within the precision of the data
U'AE. Wada, J. Sci. Research Inst. (Tokyo) 47, 168 (1953); eotdi alsIadI: J. Polymer Sci. 14, 305 (1954). reported in Tables I and IL.
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